R, e.g.: Bokal’s cheese balls
Recently, someone in the office (Bokal?) was eating cheese balls from a barrel.
My first reaction was “Is this food?” My second was slightly less judgmental and more fertile for R exploration “In what context does this food live?” This sent me off to the web and R. I found a fairly comprehensive data set for various food and plotted Bokal’s Cheese ball in context for fat, carbs and protein–mostly what food is (fiber?). I didn’t get mass-density information, so I plotted by energy density.
And the scatter plots show more clearly that Cheese balls are out on the edge–only possible with heroic technological means.
#!/usr/bin/env Rscript # # Scott Hendrickson # 2012-01-27 # library(ggplot2) library(gridExtra) # read in nutritional data cnt<-read.table("./foodNutritionalData.csv", header=TRUE, sep=",") cnt$edensity <- cnt$Energy/cnt$Weight cnt$feratio <- cnt$Fat/cnt$Energy cnt$peratio <- cnt$Protein/cnt$Energy cnt$ceratio <- cnt$Carbohydrate/cnt$Energy summary(cnt) # single out Bokal's cheese balls cnt$Type <- "Everything Else" # this record was entered first in the file cnt$Type[c(1)] <- "Bokal's Cheese Balls" # cnt[1,] #order and context by energy density cntbyedensity <- cnt[order(cnt$edensity),] ordr <- match("Bokal's Cheese Balls", cntbyedensity$Type) print(cntbyedensity[ (ordr - 5): (ordr + 5), ], width = ,digits = 3) # arrow - horizontal arrow pointing to the x value of point offset by aoffset # point(x,y); point$dx, point$dy size; ad direction; xoffset arrow point offset; xhf, xhf arrow size fractions arrow <- function(point, ad=1, xoffset=0, xhf=0.3, yhf=0.3) { xhead <- xhf * point$dx yhead <- (1. + yhf) * point$dy data.frame( x = c( point$x-ad*xoffset, point$x-ad*xhead, point$x-ad*xhead, point$x-ad*point$dx, point$x-ad*point$dx, point$x-ad*xhead, point$x-ad*xhead, point$x-ad*xoffset), y = c( point$y, point$y+yhead, point$y-point$dy/2., point$y-point$dy/2., point$y+point$dy/2., point$y+point$dy/2., point$y-yhead, point$y) ) } ## Plots pnt_o <- data.frame( x <- c(cnt[1,"edensity"]), y <- c(80), dx <- 4, dy <- 20 ) arrow_o <- arrow( pnt_o, -1 ) ptext_o <- data.frame(label="Bokal's Cheese Balls", x=pnt_o$x + 2, y=pnt_o$y) lx_o <- c(cnt$edensity[1], cnt$edensity[1]) ly_o <- c(10, 90) o <-qplot(edensity, data=cnt, geom="histogram", binwidth = 0.2, xlab="Energy Density (cal/g)", ylab="Number of Foods") + geom_line(aes(lx_o,ly_o), color="red") + geom_polygon(aes(x,y), data=arrow_o, fill="yellow") + geom_text(aes(x, y, label=label), ptext_o) # pnt_a <- data.frame( x <- c(cnt[1,"feratio"]), y <- c(150), dx <- 0.07, dy <- 60 ) arrow_a <- arrow( pnt_a , -1) ptext_a <- data.frame(label="Bokal's Cheese Balls", x=pnt_a$x + 0.035, y=pnt_a$y) lx_a <- c(cnt$feratio[1], cnt$feratio[1]) ly_a <- c(50, 200) a <- qplot(feratio, data=cnt, geom="histogram", binwidth = 0.004, xlab="Fat/Energy (g/cal)", ylab="Number of Foods") + geom_line(aes(lx_a,ly_a), color="red") + geom_polygon(aes(x,y), data=arrow_a, fill="yellow") + geom_text(aes(x, y, label=label), ptext_a) # pnt_b <- data.frame( x <- c(cnt[1,"peratio"]), y <- c(110), dx <- 0.14, dy <- 30 ) arrow_b <- arrow( pnt_b ,-1 ) ptext_b <- data.frame(label="Bokal's Cheese Balls", x=pnt_b$x + 0.07, y=pnt_b$y) lx_b <- c(cnt$peratio[1], cnt$peratio[1]) ly_b <- c(80, 140) b <- qplot(peratio, data=cnt, geom="histogram", binwidth = 0.005, xlab="Protein/Energy (g/cal)", ylab="Number of Foods") + geom_line(aes(lx_b,ly_b), color="red") + geom_polygon(aes(x,y), data=arrow_b, fill="yellow") + geom_text(aes(x, y, label=label), ptext_b) # pnt_c <- data.frame( x <- c(cnt[1,"ceratio"]), y <- c(100), dx <- 0.24, dy <- 30 ) arrow_c <- arrow( pnt_c ,-1 ) ptext_c <- data.frame(label="Bokal's Cheese Balls", x=pnt_c$x + 0.12, y=pnt_c$y) lx_c <- c(cnt$ceratio[1], cnt$ceratio[1]) ly_c <- c(20, 120) c <- qplot(ceratio, data=cnt, geom="histogram", binwidth = 0.005, xlab="Carb/Energy (g/cal)", ylab="Number of Foods") + geom_line(aes(lx_c,ly_c), color="red") + geom_polygon(aes(x,y), data=arrow_c, fill="yellow") + geom_text(aes(x, y, label=label), ptext_c) png(filename = "./denrat.png", width = 520, height = 900, units = 'px') print( grid.arrange(o, a, b, c, ncol=1) ) dev.off() # this would work better with volume density #p <- ggplot(cnt, aes(Energy, Fat), # xlab="Energy (cal)", # ylab="Fat (g)") # try some fat-energy relationships #p + geom_point(aes(color = Type )) + # scale_x_log2() + # scale_y_log2() #p + geom_point(aes(color = Type, size = edensity )) + # scale_x_log2() + # scale_y_log2() # context for Bokal's cheese balls q <- ggplot(cnt, aes(x = edensity)) q1 <- q + geom_point(aes(edensity, feratio, color = Type)) + xlab("Energy Density (cal/g)") + ylab("Fat/Energy (g/cal)") + geom_point(aes(edensity, feratio), data=cnt[1,], size = 4, color="red") q2 <- q + geom_point(aes(edensity, peratio, color = Type)) + xlab("Energy Density (cal/g)") + ylab("Protein/Energy (g/cal)") + geom_point(aes(edensity, peratio), data=cnt[1,], size = 4, color="red") q3 <- q + geom_point(aes(edensity, ceratio, color = Type)) + xlab("Energy Density (cal/g)") + ylab("Carb/Energy (g/cal)") + geom_point(aes(edensity, ceratio), data=cnt[1,], size = 4, color="red") png(filename = "./relrat.png", width = 520, height = 900, units = 'px') print( grid.arrange(q1, q2, q3, ncol=1) ) dev.off()
(Bonus here would be some R-ish way to define and see “near” foods”)
The answer to your first question is, of course, a resounding “no!”
LikeLike